Iodine mobilization in groundwater system at Datong basin, China: evidence from hydrochemistry and fluorescence characteristics.
نویسندگان
چکیده
Characterizing the speciation of iodine in groundwater is essential for understanding its hydrogeochemical behavior in aquifer systems. To quantify the variations in iodine speciation and assess factors controlling the distribution and transformation of iodine, 82 groundwater samples and 1 rain water were collected from the Datong basin, northern China in this study. Factor analysis (FA) and excitation emission matrix with parallel factor analysis (EEM-PARAFAC) were used to clarify the potential relationships among iodine species and other hydrochemical parameters. The iodine concentrations of groundwater range from 6.23 to 1380 μg L(-1) with 47% of samples exceeding its drinking water level of 150 μg L(-1) as recommended by the Chinese government. 57% of samples have ratios of iodate to total iodine greater than 60%, while iodide as the major species in 22% of the samples. Significant amounts of organic iodine with concentrations higher than 100 μg L(-1) were observed in 9 groundwater samples. Redox conditions of groundwater system strongly affect iodine concentration and speciation of inorganic iodine in groundwater, and extremely reducing condition restricts the iodine release from sediments into groundwater. The results of FA show that iodine mobilization in groundwater is related to the nature of dissolved organic matter. EEM-PARAFAC model demonstrates the dominance of terrestrial DOM sources and the presence of microbial activities in groundwater system of the Datong basin. It is proposed that degradation of organic matter and reductive dissolution of iron oxyhydroxides are major hydrogeochemical processes responsible for the mobilization of iodine release and the genesis of organic iodine.
منابع مشابه
Integrated Artificial Neural Network Modeling and GIS for Identification of Important Factor on Groundwater Hydrochemistry (Fe-,Ca2+ and PO4-3)
Background & Aims of the Study: Groundwater resources are a crucial component of the ecosystem. Management and cleanup of contamination from groundwater resources requires a long term strategy and a huge amount of investments. Artificial neural networks (ANN) and Geographic Information System (GIS) can be useful in determining management strategies. To protect these valuable resourc...
متن کاملContribution of the aquitard to the regional groundwater hydrochemistry of the underlying confined aquifer in the Pearl River Delta, China.
Aquitards are capable of generating and preserving large amounts of chemicals. The release of the chemicals from the aquitards poses a potential contamination risk to groundwater that may be used as a drinking water source. This work aimed to identify the contribution of hydrogeochemical processes in the aquitards to groundwater hydrochemistry in the underlying confined basal aquifer by studyin...
متن کاملGeogenic Arsenic Contamination in Northwest of Iran; Role of Water Basin Hydrochemistry
Introduction: Arsenic contamination of surface and groundwater has been categorizd among high profile environmental problems around the world. The matter is of most concern where unsafe water is used for drinking. Sahand region reservoir in northwest of Iran supplies water for drinking, industrial and agricultural purposes throught irrigation of 11000 hectares of l...
متن کاملHydrochemistry and stable isotopes study of the precipitation at Haraz Basin, north of Iran
Stable isotopes (Deuterium and Oxygen-18) have a broad application in many of water related sciences. Precipitation is the most important input to the water cycle which shows considrable spatial and temporal variability in its isotope content. To study the precipitation isotope content, 51 samples from August 2015 to July 2016 have been collected mainly on a monthly basis with few events based ...
متن کاملClimatic elements, discharge and groundwater trends over time using Mann-Kendall Test in the Mighan Sub-basin of Arak
This study was an analytical research across 84 meteorological stations, performed in the Mighan sub-basin over a fifty-year study period (1961–2011).This research seeks to answer the basic question of how declining streamflow, increasing temperatures, and fluctuation in precipitation have impacted water resource allocation in the Mighan sub-basin. The research method is analytical based on Man...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Science of the total environment
دوره 468-469 شماره
صفحات -
تاریخ انتشار 2014